How do I count thee? Let me count the ways?

Sheldon Cooper's favorite number

      If you are a fan of the television series "The Big Bang Theory", then you know Sheldon often wears a shirt with 73 ...

Wednesday, July 24, 2024

The distribution has changed; and pretty tables in base R

The distribution has changed; and pretty tables in base R, by Jerry Tuttle

      So you spent hours, or maybe days, cranking out thousands of numbers, you submit it to your boss just at the deadline, your boss quickly peruses your exhibit of numbers, points to a single number and says, "This number doesn't look right." Bosses have an uncanny ability to do this.

      Your boss is pointing to something like this: Your company sells property insurance on both personal and commercial properties. The average personal property premium increased 10% in 2024. The average commercial property premium increased 10% in 2024. But you say the combined average property premium decreased 3% in 2024. You realize that negative 3% does not look right.

      You might have made an input error or a calculation error, but you don't want to admit to that. So you blurt out, "That's because the distribution has changed." And to your relief, the boss buys into that.

      "The distribution has changed" is probably a pretty good answer in more instances than you realize. A more common example is if your investment portfolio starts at 90% stocks and 10% bonds, but you have a good year with stocks, at year-end the distribution of your portfolio has changed to 94% stocks and 6% bonds, and you may want to rebalance your portfolio. How about the distribution of population by state? It has definitely changed since the prior Census. It might be hard to think of a non-trivial example of something where the distribution has not changed.

      The key calculations are the 2023 average premium is (2000 * 90 + 10000 * 10) / (90 + 10) = 2800, the 2024 average premium is (2200 * 110 + 11000 * 7) / (110 + 7) = 2726, and so the average premium change is 2726 / 2800 = .97 (rounded) = - 3%. And the distribution between personal and commercial DID change, as measured either by the distribution of number of policies (was 90% personal, now 94%) or by the distribution of premium (was 64% personal, now 76%). So because the distribution has changed towards more smaller personal policies, this pulls the combined average premium down, even though the average premium for each of the two separate subgroups has increased. (There are alternatives to the key calculations, such as weighting the percentage changes, instead of weighting the average premiums.)

      Years ago I posed a dilemma like this during job interviews for actuarial trainees to see how well they would respond to a sort of non-routine problem, but I decided it was too difficult.

      I did the above exhibit in Excel because it was quick. It was also pretty easy to add custom colors to alternating rows, which I did via FONT > FILL > MORE COLORS > CUSTOM > enter HEX CODE. Here I chose cornsilk #fff8dc and cyan #00ffff for fun.

      Then I wondered how easy it would be to make a pretty table in R. If you google something like "pretty tables in R", you will find a number of R packages that create HTML type code that can be saved as an HTML file, a PDF file, or another file format. Much has been written about these packages, but they seem a little complicated for basic work, and further, I like the idea of staying exclusively within the R environment. When I realized a table is just a collection of rectangles, it occurred to me that the base R commands of rectangle and text are pretty much all I need.

      Here is a table of sample rectangles with text, written in R. The rectangle syntax is rect(xleft, ybottom, xright, ytop, col, border) and the text syntax is text(x, y, labels, col, cex, font). The numerical axis is helpful when first defining the rectangles, but can be deleted by adding axes = FALSE to the plot function for the final table.

# rectangle syntax: rect(xleft, ybottom, xright, ytop)
plot(x = c(0, 500), y = c(0, 500), type= "n", xlab = "", ylab = "", main = "Sample rectangles with text", cex=2, font=2)

rect(0, 0, 250, 250, col = "#E41A1C", border = "blue")
text(125, 125, "red rectangle, white font", col="white", cex=1.15, font=2)

rect(250, 0, 500, 250, col = "yellow", border = "blue")
text(375, 125, "yellow rectangle, blue font", col="navyblue", cex=1.15, font=2)

rect(0, 250, 250, 500, col = "cornsilk", border = "blue")
text(125, 375, "cornsilk rectangle, black font", col="black", cex=1., font=2)

rect(250, 250, 500, 500, col = "cyan", border = "blue")
text(375, 375, "cyan rectangle, purple font", col="purple", cex=1.15, font=2)

      The R equivalent of the Excel exhibit is the following. Note that all code is in base R.

title <- c("Subgroups increase, but the average decreases")
df <- data.frame(Personal = c(2000, 90, 2200, 110, 10),
Commercial = c(10000, 10, 11000, 7, 10),
Weighted = c(2800, 100, 2726, 117, -3))

rownames(df) = c("2023 Avg Prem", "2023 No. Policies","2024 Avg Prem", "2024 No. Policies", "Avg Prem % Change")
df

# rectangle syntax: rect(xleft, ybottom, xright, ytop)
op <- par(bg = "thistle")
col1 = "cornsilk"
col2 = "cyan"

plot(x = c(0, 500), y = c(0, 700), type= "n", xlab = "", ylab = "", axes = FALSE)
height = 100

rect(0, 6*height, 500, 7*height, col = col1, border = "blue")
text(250, 6.5*height, title, col="black", cex=1.25, font=2)

rect(0, 5*height, 200, 6*height, col = col2, border = "blue")
rect(200, 5*height, 300, 6*height, col = col2, border = "blue")
rect(300, 5*height, 400, 6*height, col = col2, border = "blue")
rect(400, 5*height, 500, 6*height, col = col2, border = "blue")

text(100, 5.5*height, "", col="blue")
text(250, 5.5*height, colnames(df)[1], col="blue")
text(350, 5.5*height, colnames(df)[2], col="blue")
text(450, 5.5*height, colnames(df)[3], col="blue")

rect(0, 4*height, 200, 5*height, col = col1, border = "blue")
rect(200, 4*height, 300, 5*height, col = col1, border = "blue")
rect(300, 4*height, 400, 5*height, col = col1, border = "blue")
rect(400, 4*height, 500, 5*height, col = col1, border = "blue")

text(100, 4.5*height, rownames(df)[1], col="blue")
text(250, 4.5*height, df[1,1], col="blue")
text(350, 4.5*height, df[1,2], col="blue")
text(450, 4.5*height, df[1,3], col="blue")

rect(0, 3*height, 200, 4*height, col = col2, border = "blue")
rect(200, 3*height, 300, 4*height, col = col2, border = "blue")
rect(300, 3*height, 400, 4*height, col = col2, border = "blue")
rect(400, 3*height, 500, 4*height, col = col2, border = "blue")

text(100, 3.5*height, rownames(df)[2], col="blue")
text(250, 3.5*height, df[2,1], col="blue")
text(350, 3.5*height, df[2,2], col="blue")
text(450, 3.5*height, df[2,3], col="blue")

rect(0, 2*height, 200, 3*height, col = col1, border = "blue")
rect(200, 2*height, 300, 3*height, col = col1, border = "blue")
rect(300, 2*height, 400, 3*height, col = col1, border = "blue")
rect(400, 2*height, 500, 3*height, col = col1, border = "blue")

text(100, 2.5*height, rownames(df)[3], col="blue")
text(250, 2.5*height, df[3,1], col="blue")
text(350, 2.5*height, df[3,2], col="blue")
text(450, 2.5*height, df[3,3], col="blue")

rect(0, height, 200, 2*height, col = col2, border = "blue")
rect(200, height, 300, 2*height, col = col2, border = "blue")
rect(300, height, 400, 2*height, col = col2, border = "blue")
rect(400, height, 500, 2*height, col = col2, border = "blue")

text(100, 1.5*height, rownames(df)[4], col="blue")
text(250, 1.5*height, df[4,1], col="blue")
text(350, 1.5*height, df[4,2], col="blue")
text(450, 1.5*height, df[4,3], col="blue")

rect(0, 0, 200, height, col = col1, border = "blue")
rect(200, 0, 300, height, col = col1, border = "blue")
rect(300, 0, 400, height, col = col1, border = "blue")
rect(400, 0, 500, height, col = col1, border = "blue")

text(100, .5*height, rownames(df)[5], col="blue")
text(250, .5*height, paste(df[5,1], "%"), col="black", cex=1.5)
text(350, .5*height, paste(df[5,2], "%"), col="black", cex=1.5)
text(450, .5*height, paste(df[5,3], "%"), col="black", cex=2, font=2)

par(op)

# END

#######################################

Thursday, July 18, 2024

Radar charts and five-tool baseball players

Radar charts and five-tool baseball players by Jerry Tuttle

      I was looking for an opportunity to practice with radar charts and I came across an article on five-tool baseball players, so this seemed like a perfect application for this kind of chart.

      A radar chart is an alternative to a column chart to display three or more quantitative variables. The chart graphs the values in a circular manner around a center point.

      The five tools in baseball are: (1) hitting for average; (2) hitting for power; (3) defense; (4) throwing; and (5) speed. A five-tool player excels in all five of these.

      Among current players, Mike Trout is considered a five-tool player. The measurement of Trout’s five tools can be displayed in the following radar chart:

      Trout is rated at 80 for hitting for average, 70 for hitting for power, and his lowest scores are 60 for defense, throwing and speed. This is based on a 20-to-80 rating system, where 80 is elite, 70 is plus-plus, and 60 is plus. Sorry - I could not get the points to line up with the concentric pentagons.

      For comparison, here is a display of Aaron Judge's ratings.

      Judge is rated at 80 for hitting for power, 70 for hitting for average, 60 for defense, 70 for throwing, and 50 for speed, where the 50 is average at the major league level.

      The results of several players can be displayed in a single radar chart, but this becomes hard to read. Three players are probably the maximum for readability.

      The alternative to visualizing several players is either to create several individual radar charts or else to create a bar (horizontal) chart or a column (vertical) chart.

      Each of the five tools is generally rated on a 20-to-80 scale, where 50 is average (for a major leaguer), 80 is elite, and every 10 points is supposed to represent one standard deviation. I suspect the standard deviation concept is more judgmental than mathematical. There is not a single rating system; some use traditional baseball statistics, and others use modern motion tracking data.

      The numerical data above was obtained from an article by Jake Mintz in 2022 for Fox Sports https://www.foxsports.com/stories/mlb/trout-betts-rodriguez-the-definition-of-mlbs-five-tool-players . In Mintz's data, all numbers are shown rounded to the nearest 10. Mintz only has five current players as five-tool players: Mike Trout, Mookie Betts, Trea Turner, Byron Buxton, and Julio Rodriguez. I tried graphing all five players in a single radar chart, but this was too hard to read. Mintz thinks a true five-tool player should have a grade of at least 60 in each of the five categories. By this measure, Aaron Judge is not quite a five-tool player due to a 50 in speed, and a number of elite major leaguers have at least one 50. Note that each category is considered separately. If there were some sort of weighting system, many people would weigh hitting with power as most important, followed by hitting for average, although perhaps the weights should vary by position with higher weights for defense and throwing for catcher, middle infielders, and center fielder. Pitchers have a different grading system.

      What about Shohei Ohtani? At the time of his article, Mintz did not have sufficient data on Ohtani.

      Mintz observes that Mike Trout worked one winter to improve his throwing, and Julio Rodriguez worked to increase his speed. This suggests that the ratings probably change over the life of a player and are dependent on when they are measured.

      Other authors suggest that there is a sixth tool of exceptional players such as mental makeup and character. Another tool might be situational game awareness.

      Modern motion tracking data by Statcast and others did not exist until fairly recently. Willie Mays is generally considered the greatest five-tool player. Using statistical measures, author Herm Krabbenhoft suggests Tris Speaker, Ty Cobb, and Honus Wagner should be considered as five tool players, although Krabbenhoft measures hitting for power with SLG (slugging percentage) and ISO (isolated power), not home runs https://sabr.org/journal/article/honus-wagner-baseballs-prototypical-five-tooler/ . A very different measure of hitting with power would be something like home run distance greater than 425 feet or launch angle and velocity.

      What about Babe Ruth? We know Babe Ruth's career numbers are .342 batting average and 714 home runs. I have not read anything about his defense, throwing, or speed. He did steal 123 bases, including home 10 times; maybe he was faster than we realize. He is remembered for getting thrown out stealing second to end the 1926 World Series, but perhaps the hit-and-run play was on, and Bob Meusel, the batter, swung and missed the pitch? See https://baseballegg.com/2019/10/30/babe-ruths-failed-stolen-base-attempt-ended-the-1926-world-series-or-is-that-what-really-happened/ . Ruth had 204 assists as an outfielder, which sounds like a lot. I wonder how he would have ranked in defense, throwing, and speed?

      Here is my R code. I do like radar charts for comparing one to three observations over five variables, as a change of pace from column charts. I used the fmsb library for the radar charts. There is also a ggradar library, but I did not like its visualization. One of the quirks of fmsb is that the axis for each variable can have its own scale. Originally I used each variable's max and min values, but the axes were out of sync, so I replaced this with the grand max and min. Also, I could not get the values, which are all multiples of ten, to line up on the concentric pentagons.

library(fmsb)
library(scales)

group = c("Hit_avg", "Hit_power", "Defense", "Throwing", "Speed")
player_names = c("Trout","Betts","Judge")
players <- data.frame(
   row.names = player_names,
   Hit_avg = c(80, 70, 70),
   Hit_power = c(70,60,80),
   Defense = c(60,70,60),
   Throwing = c(60,80,70),
   Speed = c(60,70,50))
players

# The row 1 should contain the maximum values for each variable
# The row 2 should contain the minimum values for each variable
# Data for cases or individuals should be given starting from row 3
# Define the variable ranges: maximum and minimum; however, want axes to have equal scales

max_min <- data.frame(
   Hit_avg = c(max(players), min(players)),
   Hit_power = c(max(players), min(players)),
   Defense = c(max(players), min(players)),
   Throwing = c(max(players), min(players)),
   Speed = c(max(players), min(players)))

rownames(max_min) <- c("Max", "Min") # row 1 has max's, row 2 has min's.
df <- rbind(max_min, players)
df

player1_data <- df[c("Max", "Min", player_names[1]), ]
player2_data <- df[c("Max", "Min", player_names[2]), ]
player3_data <- df[c("Max", "Min", player_names[3]), ]

chart <- function(data, color, title){
     radarchart(data, axistype = 0,
       pcol = color, pfcol = scales::alpha(color, 0.5), plwd = 2, plty = 1,
        vlabels = colnames(data), vlcex = 1.5,
       cglcol = "black", cglty = 1, cglwd = 0.8,
        caxislabels = NULL,
       title = title)
}

# Plot the data for players 1, 2, and 3 separately
chart(data=player1_data, color="#00AFBB", title="MIKE TROUT 5 Tools")
chart(data=player2_data, color="#E7B800", title="MOOKIE BETTS 5 Tools")
chart(data=player3_data, color="#FC4E07", title="AARON JUDGE 5 Tools")

# Plot the data for three players
chart(data=df, color=c("#00AFBB", "#E7B800", "#FC4E07"), # blue-green, red-green, red-green
     title="TROUT, BETTS, JUDGE 5 Tools")
legend(
     x = "bottom", legend = rownames(df[-c(1,2),]), horiz = FALSE,
     bty = "n", pch = 20 , col = c("#00AFBB", "#E7B800", "#FC4E07"),
     text.col = "black", cex = 1.25, pt.cex = 1.5)

###########################################

# column graphs

library(tibble)
library(tidyr)
library(ggplot2)
# Reshape data to long format
players_long <- players %>%
     rownames_to_column("player") %>%
     pivot_longer(cols = -player, names_to = "group", values_to = "value")

# Common theme for graphs
common_theme <- theme(
   legend.position="right",
   plot.title = element_text(size=15, face="bold"),
   axis.title = element_text(size=15, face="bold"),
   axis.text = element_text(size=15, face="bold"),
   legend.title = element_text(size=15, face="bold"),
   legend.text = element_text(size=15, face="bold"))

# Create column graph: Tool Ratings by Player
ggplot(players_long, aes(x = player, y = value, fill = group, title = "Tool Ratings by Player")) +
   geom_col(position = "dodge") +
   labs(x = "Player", y = "Rating", fill = "Group") +
   common_theme

# Create the column graph: Player Ratings for each Tool
ggplot(players_long, aes(x = group, y = value, fill = player)) +
   geom_col(position = "dodge") +
   labs(x = "Group", y = "Rating", fill = "Player", title = "Player Ratings for each Tool") +
   common_theme

### END

##################################################################################